Tuesday, 15 August 2017

Movendo Média De Ordem 2


Adicione uma linha de tendência ou média móvel a um gráfico Aplica-se a: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Mais. Menos Para mostrar tendências de dados ou médias móveis em um gráfico que você criou. Você pode adicionar uma linha de tendência. Você também pode ampliar uma linha de tendência além de seus dados reais para ajudar a prever os valores futuros. Por exemplo, a seguinte linha de tendência linear prevê dois trimestres à frente e mostra claramente uma tendência ascendente que parece promissora para futuras vendas. Você pode adicionar uma linha de tendência a um gráfico 2-D que não está empilhado, incluindo área, barra, coluna, linha, estoque, dispersão e bolha. Você não pode adicionar uma linha de tendência a um gráfico empilhado, 3-D, radar, torta, superfície ou filhós. Adicione uma linha de tendência No seu gráfico, clique na série de dados para a qual deseja adicionar uma linha de tendência ou média móvel. A linha de tendência começará no primeiro ponto de dados da série de dados que você escolher. Verifique a caixa Trendline. Para escolher um tipo diferente de linha de tendência, clique na seta ao lado de Trendline. E depois clique em Exponencial. Previsão linear. Ou a média móvel de dois períodos. Para linhas de tendência adicionais, clique em Mais opções. Se você escolher Mais opções. Clique na opção desejada no painel Format Trendline em Trendline Options. Se você selecionar Polinomio. Insira a maior potência para a variável independente na caixa Ordem. Se você selecionar Moeda em Movimento. Digite o número de períodos a serem usados ​​para calcular a média móvel na caixa Período. Dica: uma linha de tendência é mais precisa quando seu valor R-quadrado (um número de 0 a 1 que revela o quão próximo os valores estimados para a linha de tendência correspondem aos seus dados reais) está em ou próximo de 1. Quando você adiciona uma linha de tendência aos seus dados , O Excel calcula automaticamente o valor R-squared. Você pode exibir esse valor em seu gráfico, verificando o valor Exibir R-quadrado na caixa de gráfico (painel Formato Trendline, Opções Trendline). Você pode aprender mais sobre todas as opções de linha de tendência nas seções abaixo. Linha de tendência linear Use este tipo de linha de tendência para criar uma linha reta de melhor ajuste para conjuntos de dados lineares simples. Seus dados são lineares se o padrão em seus pontos de dados parecer uma linha. Uma linha de tendência linear geralmente mostra que algo está aumentando ou diminuindo a uma taxa constante. Uma linha de tendência linear usa esta equação para calcular os mínimos quadrados adequados para uma linha: onde m é a inclinação e b é a intercepção. A linha de tendência linear a seguir mostra que as vendas de refrigeradores aumentaram consistentemente ao longo de um período de 8 anos. Observe que o valor R-squared (um número de 0 a 1 que revela o quão próximo os valores estimados para a linha de tendência correspondem aos seus dados reais) é 0.9792, que é um bom ajuste da linha para os dados. Mostrando uma linha curvada de melhor ajuste, esta linha de tendência é útil quando a taxa de mudança nos dados aumenta ou diminui rapidamente e, em seguida, nivela para fora. Uma linha de tendência logarítmica pode usar valores negativos e positivos. Uma linha de tendência logarítmica usa esta equação para calcular os mínimos quadrados que se encaixam nos pontos: onde c e b são constantes e ln é a função de logaritmo natural. A seguinte linha de tendência logarítmica mostra o crescimento populacional previsto de animais em uma área de espaço fixo, onde a população se estabilizou, pois o espaço para os animais diminuiu. Observe que o valor R-squared é 0.933, que é um ajuste relativamente bom da linha para os dados. Esta linha de tendência é útil quando seus dados flutuam. Por exemplo, quando você analisa ganhos e perdas em um grande conjunto de dados. A ordem do polinômio pode ser determinada pelo número de flutuações nos dados ou por quantas curvas (colinas e vales) aparecem na curva. Normalmente, uma linha de tendência polinomial da Ordem 2 tem apenas uma colina ou vale, uma Ordem 3 tem uma ou duas colinas ou vales, e uma Ordem 4 tem até três colinas ou vales. Uma linha de tendência polinomial ou curvilínea usa esta equação para calcular os mínimos quadrados que se encaixam nos pontos: onde b e são constantes. A seguinte linha de tendência polinômica da ordem 2 (uma colina) mostra a relação entre velocidade de condução e consumo de combustível. Observe que o valor R-squared é 0.979, que é próximo de 1, de modo que as linhas são adequadas aos dados. Mostrando uma linha curva, esta linha de tendência é útil para conjuntos de dados que comparam medidas que aumentam a uma taxa específica. Por exemplo, a aceleração de um carro de corrida em intervalos de 1 segundo. Você não pode criar uma linha de tendência de energia se seus dados contiverem valores zero ou negativos. Uma linha de tendência de energia usa esta equação para calcular os mínimos quadrados que se encaixam nos pontos: onde c e b são constantes. Nota: Esta opção não está disponível quando seus dados incluem valores negativos ou zero. O gráfico de medidas de distância a seguir mostra a distância em metros por segundos. A linha de tendência de energia demonstra claramente a crescente aceleração. Observe que o valor R-squared é 0.986, que é um ajuste quase perfeito da linha para os dados. Mostrando uma linha curva, esta linha de tendência é útil quando os valores de dados aumentam ou diminuem em taxas cada vez maiores. Você não pode criar uma linha de tendência exponencial se seus dados contiverem valores zero ou negativos. Uma linha de tendência exponencial usa esta equação para calcular os mínimos quadrados que se encaixam nos pontos: onde c e b são constantes e e é a base do logaritmo natural. A seguinte linha de tendência exponencial mostra a quantidade decrescente de carbono 14 em um objeto à medida que envelhece. Observe que o valor R-squared é 0.990, o que significa que a linha se encaixa perfeitamente nos dados. Moving Average trendline Esta linha de tendência eleva as flutuações nos dados para mostrar um padrão ou tendência com mais clareza. Uma média móvel usa um número específico de pontos de dados (definido pela opção Período), os em média e usa o valor médio como um ponto na linha. Por exemplo, se Period for definido como 2, a média dos dois primeiros pontos de dados é usada como o primeiro ponto da linha de tendência média móvel. A média do segundo e terceiro pontos de dados é usada como o segundo ponto na linha de tendência, etc. Uma linha de tendência média móvel usa esta equação: O número de pontos em uma linha de tendência média móvel é igual ao número total de pontos na série, menos a Número que você especificou para o período. Em um gráfico de dispersão, a linha de tendência é baseada na ordem dos valores x no gráfico. Para obter um resultado melhor, classifique os valores x antes de adicionar uma média móvel. A seguinte linha de tendência média móvel mostra um padrão no número de casas vendidas ao longo de um período de 26 semanas. Média Mínima - MA O que é uma Média Móvel - MA Um indicador amplamente utilizado na análise técnica que ajuda a suavizar a ação de preços ao filtrar o ruído De flutuações de preços aleatórias. Uma média móvel (MA) é um indicador de tendência ou atraso porque se baseia em preços passados. As duas MAs básicas e comumente usadas são a média móvel simples (SMA), que é a média simples de uma segurança em um determinado número de períodos de tempo, e a média móvel exponencial (EMA), que dá maior peso aos preços mais recentes. As aplicações mais comuns de MAs são identificar a direção da tendência e determinar os níveis de suporte e resistência. Enquanto os MAs são úteis o suficiente por si só, eles também formam a base para outros indicadores, como a Divergência da Convergência da Média Mover (MACD). Carregando o jogador. BREAKING DOWN Média móvel - MA Como exemplo de SMA, considere uma garantia com os seguintes preços de fechamento em 15 dias: Semana 1 (5 dias) 20, 22, 24, 25, 23 Semana 2 (5 dias) 26, 28, 26, 29, 27 semanas 3 (5 dias) 28, 30, 27, 29, 28 Um MA de 10 dias seria a média dos preços de fechamento dos primeiros 10 dias como primeiro ponto de dados. O próximo ponto de dados eliminaria o preço mais antigo, adicionaria o preço no dia 11 e levaria a média, e assim por diante, como mostrado abaixo. Conforme observado anteriormente, as MAs desaceleram a ação de preço atual porque são baseadas em preços passados ​​quanto mais o período de tempo para o MA, maior o atraso. Assim, um MA de 200 dias terá um atraso muito maior do que um MA de 20 dias porque contém preços nos últimos 200 dias. O comprimento do MA para usar depende dos objetivos de negociação, com MAs mais curtos usados ​​para negociação de curto prazo e MAs de longo prazo mais adequados para investidores de longo prazo. O MA de 200 dias é amplamente seguido por investidores e comerciantes, com rupturas acima e abaixo desta média móvel considerada como sinal comercial importante. Os MAs também oferecem sinais comerciais importantes por conta própria, ou quando duas médias atravessam. Um MA ascendente indica que a segurança está em uma tendência de alta. Enquanto um MA decrescente indica que está em uma tendência de baixa. Da mesma forma, o momento ascendente é confirmado com um cruzamento de alta. O que ocorre quando um mes de curto prazo cruza acima de um MA de longo prazo. O momento decrescente é confirmado com um cruzamento descendente, que ocorre quando um MA de curto prazo se cruza abaixo de um termo a longo prazo MA.6.2 Médias móveis ma 40 elesales, ordem 5 41 Na segunda coluna desta tabela, uma média móvel da ordem 5 é Mostrado, fornecendo uma estimativa do ciclo da tendência. O primeiro valor nesta coluna é a média das cinco primeiras observações (1989-1993), o segundo valor na coluna 5-MA é a média dos valores 1990-1994 e assim por diante. Cada valor na coluna 5-MA é a média das observações no período de cinco anos centrado no ano correspondente. Não há valores nos dois primeiros anos ou nos últimos dois anos porque não temos duas observações em ambos os lados. Na fórmula acima, a coluna 5-MA contém os valores de hatwith k2. Para ver o que a estimativa do ciclo de tendência se parece, traçamo-lo juntamente com os dados originais na Figura 6.7. Planilha 40 elesales, quot principal de vendas de eletricidade residencial, ylab quotGWhot. Xlab quotYearquot 41 linhas 40 ma 40 elecsales, 5 41. col quotredquot 41 Observe como a tendência (em vermelho) é mais suave do que os dados originais e captura o movimento principal das séries temporais sem todas as pequenas flutuações. O método de média móvel não permite estimativas de T onde t é próximo das extremidades da série, portanto, a linha vermelha não se estende para as bordas do gráfico de cada lado. Mais tarde, usaremos métodos mais sofisticados de estimativa do ciclo de tendência que permitem estimativas próximas aos pontos finais. A ordem da média móvel determina a suavidade da estimativa do ciclo de tendência. Em geral, uma ordem maior significa uma curva mais suave. O gráfico a seguir mostra o efeito de alterar a ordem da média móvel para os dados residenciais de vendas de eletricidade. As médias móveis simples, como estas, geralmente são de ordem ímpar (por exemplo, 3, 5, 7, etc.). É assim que são simétricas: em uma média móvel da ordem m2k1, há k observações anteriores, k observações posteriores e a observação do meio Que estão em média. Mas se eu estivesse em ponto, não seria mais simétrico. Médias móveis das médias móveis É possível aplicar uma média móvel a uma média móvel. Um dos motivos para isso é fazer uma média móvel de ordem par simétrica. Por exemplo, podemos levar uma média móvel da ordem 4 e, em seguida, aplicar outra média móvel da ordem 2 aos resultados. Na Tabela 6.2, isso foi feito para os primeiros anos dos dados de produção australiana de cerveja trimestral. Beer2 lt - window 40 ausbeer, começar 1992 41 ma4 lt-ma 40 beer2, order 4. center FALSE 41 ma2x4 lt-ma 40 beer2, order 4. center TRUE 41 A notação 2times4-MA na última coluna significa 4-MA Seguido por um 2-MA. Os valores na última coluna são obtidos tomando uma média móvel da ordem 2 dos valores na coluna anterior. Por exemplo, os dois primeiros valores na coluna 4-MA são 451.2 (443410420532) 4 e 448.8 (410420532433) 4. O primeiro valor na coluna 2times4-MA é a média desses dois: 450.0 (451.2448.8) 2. Quando um 2-MA segue uma média móvel de ordem par (como 4), ela é chamada de média móvel centrada da ordem 4. Isso ocorre porque os resultados agora são simétricos. Para ver que este é o caso, podemos escrever o 2times4-MA da seguinte forma: comece o amplificador de amplificação. Bigfrac (y y y y) frac (y y y y) Grande amplificação fractura fractura fratura e fractura fratura. Fim É agora uma média ponderada de observações, mas sim simétrico. Outras combinações de médias móveis também são possíveis. Por exemplo, um 3x3-MA é freqüentemente usado e consiste em uma média móvel da ordem 3 seguida de outra média móvel da ordem 3. Em geral, uma ordem final MA deve ser seguida por uma ordem final MA para torná-la simétrica. Da mesma forma, uma ordem ímpar MA deve ser seguida por uma ordem ímpar MA. Estimando o ciclo de tendência com dados sazonais O uso mais comum de médias móveis centradas é estimar o ciclo de tendência a partir de dados sazonais. Considere o 2times4-MA: hatfrac y fraclly frac14y frac14y frac18y. Quando aplicado a dados trimestrais, cada trimestre do ano recebe peso igual à medida que o primeiro e o último termos se aplicam ao mesmo trimestre em anos consecutivos. Conseqüentemente, a variação sazonal será promediada e os valores resultantes do chapéu t terão pouca ou nenhuma variação sazonal restante. Um efeito semelhante seria obtido usando um 2x 8-MA ou um 2x 12-MA. Em geral, 2 vezes m-MA é equivalente a uma média móvel ponderada da ordem m1 com todas as observações tomando peso 1m, exceto para os primeiros e últimos termos que tomam pesos 1 (2m). Então, se o período sazonal é igual e de ordem m, use um 2-m-MA para estimar o ciclo da tendência. Se o período sazonal for estranho e de ordem m, use um m-MA para estimar o ciclo de tendências. Em particular, um 2x 12-MA pode ser usado para estimar o ciclo de tendência dos dados mensais e um 7-MA pode ser usado para estimar o ciclo de tendência dos dados diários. Outras opções para a ordem do MA geralmente resultarão em estimativas do ciclo de tendência sendo contaminadas pela sazonalidade nos dados. Exemplo 6.2 Fabricação de equipamentos elétricos A Figura 6.9 mostra um 2x12-MA aplicado ao índice de pedidos de equipamentos elétricos. Observe que a linha suave mostra nenhuma sazonalidade é quase o mesmo que o ciclo de tendência mostrado na Figura 6.2, que foi estimado usando um método muito mais sofisticado do que as médias móveis. Qualquer outra escolha para a ordem da média móvel (exceto 24, 36, etc.) teria resultado em uma linha suave que mostra algumas flutuações sazonais. Lote 40 elecequip, ylab quotNúmero de índice de ordens. Quotgrayquot col, quot principal. Produção de equipamentos elétricos (área do euro) 41 linhas 40 ma 40 elecequip, ordem 12 41. col quotredquot 41 Médias móveis ponderadas As combinações de médias móveis resultam em médias móveis ponderadas. Por exemplo, o 2x4-MA discutido acima é equivalente a 5-MA ponderado com pesos dados por frac, frac, frac, frac, frac. Em geral, um m-MA ponderado pode ser escrito como hat t sum k aj y, onde k (m-1) 2 e os pesos são dados por a, pontos, ak. É importante que todos os pesos somem para um e que sejam simétricos para que aj a. O m-MA simples é um caso especial em que todos os pesos são iguais a 1m. Uma grande vantagem das médias móveis ponderadas é que eles produzem uma estimativa mais suave do ciclo da tendência. Em vez das observações que entram e saem do cálculo em peso total, seus pesos aumentam lentamente e depois diminuem lentamente resultando em uma curva mais suave. Alguns conjuntos específicos de pesos são amplamente utilizados. Alguns destes são apresentados na Tabela 6.3.

No comments:

Post a Comment